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Abstract

We propose a method of constructing completely integrable systems based on reduction of bi-
hamiltonian structures. More precisely, we give an easily checkable necessary and sufficient condi-
tions for the micro-kroneckerity of the reduction (performed with respect to a special type action of
a Lie group) of micro-Jordan bihamiltonian structures whose Nijenhuis tensor has constant eigen-
values. The method is applied to the diagonal action of a Lie groupG on a direct product ofN
coadjoint orbitsO = O1 × · · · × ON ⊂ g∗ × · · · × g∗ endowed with a bihamiltonian structure
whose first generator is the standard symplectic form onO. As a result we get the so-called classical
Gaudin system onO. The method works for a wide class of Lie algebras including the semisimple
ones and for a large class of orbits including the generic ones and the semisimple ones.
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1. Introduction

In this paper we propose a method of constructing completely integrable systems, based
on reduction of bihamiltonian structures. The method is illustrated by producing a class
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of systems on products of coadjoint orbits, which includes the so-called classical Gaudin
systems. Now we will briefly explain the method and discuss the Gaudin systems.

According to the last decade investigations of bihamiltonian structures[8–10,23], i.e.
pairs of compatible Poisson bivectors which will be called bi-Poisson structures in this
paper, there are two main classes of them: micro-Jordan and micro-Kronecker (we shall
omit the prefix micro- in this section for shortness). Jordan structures can be characterized
by the property that almost every bivector in the corresponding pencil is nondegenerate, that
is, the structure can be generated by the inverses of two symplectic forms(ω1)

−1, (ω2)
−1.

Kronecker pencils consist of degenerate bivectors and are distinguished by the condition of
the constancy of rank (seeSection 3). Both classes of bi-Poisson structures play important
role in completely integrable systems. Given a Jordan structure, one constructs an involutive
family of functions by means of the corresponding Nijenhuis operatorN = ω−1

2 ◦ ω1 (the
eigenvalues ofN are in involution and in various examples there are enough functionally
independent ones); in Kronecker case functions in involution appear as Casimir functions
of the Poisson bivectors of the pencil and form a complete set.

Among Jordan bi-Poisson structures there are ones which are trivial from the point of
view of complete integrability: structures with the constant eigenvalues ofN. We call them
dull (after Zakharevich). It is amazing that using the simultaneous Poisson reduction of the
symplectic formsω1, ω2 related to such a structure one can produce a Kronecker bi-Poisson
structure which is far from being “dull” since it gives a complete involutive family of
functions, Casimirs of the Kronecker pencil. Due to this remark the following question
seems to be important: when a simultaneous Poisson reduction of two symplectic forms
generating a dull Jordan bi-Poisson structure gives a Kronecker one? We give necessary and
sufficient conditions for such a reduction to be Kronecker in the situation which roughly
can be described as follows: a Lie groupG acts freely on a manifoldM with a dull Jordan
bi-Poisson structure; this action is hamiltonian with respect to all bivectors of the pencil; the
induced actions on the spaces of symplectic leaves of the exceptional (i.e. of nonmaximal
rank) bivectors are transitive (seeTheorem 4.2).

Now, assume we are in such a situation and the necessary and sufficient conditions
mentioned are satisfied. Then we are able to produce two complete involutive families of
functions onM/GandM respectively. First of them,F, is generated by all Casimir functions
of bivectors from the constructed Kronecker pencil onM/G. It is involutive and complete
with respect to any Poisson bivector of the pencil. The second one,Gt0, is related to any
nondegenerate bivectorηt0 from the initial dull Jordan pencil{ηt = (ω1)

−1 + t(ω2)
−1|t ∈

P
1 = R

1 ∪∞}. Denoting byp the canonical projectionM → M/G, we defineGt0 as the
family p∗F completed byµ∗t0F

′, whereµt0 is the corresponding moment mapM → g∗
andF ′ is a complete involutive set of functions ong∗ (endowed with the canonical linear
Poisson bivectorηcan). The familyGt0 is involutive and complete with respect toηt0.

Note, that due to the standard properties of the dual pairs of Poisson structures (cf.
Section 2) the familyGt0 can be also generated byµ∗t0F

′ and by{µ∗t Zηcan|t ∈ P
1} (instead

ofp∗F ), whereZηcan is the set of Casimirs ofηcan, i.e. invariants of coadjoint representation.
Next, we apply the method described above to the following data:M = O1×· · ·×ON ⊂

(g∗)×N is a coadjoint orbit of the Cartesian productG×N of N copies of a Lie groupG,
G acting onM diagonally;ω1 = ω(1) + · · · + ω(N) is the standard symplectic form on
M, ω(i) being the standard symplectic form onOi; ω2 is defined as(1/a1)ω(1) + · · · +
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(1/aN)ω(N), wherea1, . . . , aN are any different real numbers. Under some conditions on the
orbitsO1, . . . , ON (seeTheorem 5.3) Theorem 4.2can be applied and we get a Kronecker
bi-Poisson structure on the regular part of the varietyM/G and the corresponding complete
involutive sets of functionsF andGt0. By the remark above this last can be generated by
µ∗t0F

′ and{µ∗t Zηcan|t ∈ P
1}, whereµt(x1, . . . , xN) = (1/(t+a1))x1+· · ·+(1/(t+aN))xN ,

as calculations show. So, we recognize inGt0 the so-called classical Gaudin integrable
system.

The quantum version of this system, which uses the Lie algebra su(2) and describes some
type of interaction of particles with spin, was introduced by Gaudin[5–7]. Later Sklyanin
[19–21]studied separability of classical and quantum systems in case ofg = sl(n) and with
additional term inµt , a constant regular matrix. The integrability of such systems was also
discussed in[18] from the point of view ofr-matrix formalism.

Summarizing, the following items of this paper seem to be new: (1) the method of con-
structing completely integrable systems based on the reduction of dull Jordan bi-Poisson
structures; (2) application of this method to the Gaudin type systems; (3) proof of the com-
plete integrability of such systems for a wide class of Lie algebras including all semisimple
ones and for a wide class of coadjoint orbits including all generic ones and all semisimple
ones (seeSection 5, in particularRemark 5.9).

The paper is organized as follows.Section 2is preparatory: we introduce notations
and recall standard definitions and facts related to Poisson structures, their dual pairs and
hamiltonian actions.Proposition 2.21is new (but easy).Proposition 2.22is doubtlessly
known but the author was not able to find its explicit formulation in the literature.

Similarly, Section 3serves for introducing the notations and main data on bi-Poisson
structures. The material of this section is more or less standard.

In Section 4we give the first main result of this paper: necessary and sufficient conditions
for the kroneckerity of the reduction of a dull Jordan bi-Poisson structure with respect to a
specific bihamiltonian action of a Lie group (Theorem 4.2). In Corollary 4.3we apply this
result for constructing a completely integrable system on the initial manifold (the above
mentioned familyGt0). We also illustrate the method by an example of a diagonal action of
SL(2) onR

2N endowed with a dull Jordan bi-Poisson structure (seeExample 4.4).
In Section 5we develop this example and construct a dull Jordan bi-Poisson struc-

ture on a cartesian product ofN coadjoint orbits of a Lie groupG, whose reduction with
respect to the diagonal action ofG is Kronecker.Theorem 5.3which establishes this kro-
neckerity usingTheorem 4.2is the second main result of the paper. Also, we calculate
the corresponding families of the moment mapsµt and complete involutive families of
functionsF andGt (Corollaries 5.4–5.6). We conclude the paper by the discussion on the
range of applicability of the method (Theorem 5.7, Lemma 5.8, Remarks 5.9 and 5.10and
Proposition 5.11).

2. Projections of Poisson structures, dual pairs and complete involutive sets of
functions

Convention and Notations 2.1. All objects in this paper are real-analytic or complex
analytic,M stands for a connected manifold,E(U) for a space of respectively real-valued
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analytic or holomorphic functions on an open setU ⊂ M. We shall writeK for R or
C depending on the category. The terms reduction and projection related to the Poisson
structures are synonyms in this paper.

Definition 2.2. LetM be a manifold,η ∈ Γ(
∧2 TM) be a bivector field (from now on we

shall skip the last word). We considerη as a homomorphism:

η : T ∗M → TM,

obtained by the contraction on the first index and define the (generalized) distribution of
characteristic subspacesχη ⊂ TM by

χηx = im ηx, x ∈ M.

Set rankηx = dim imηx, rankη = maxx∈M rankηx andRη = {x ∈ M|rankηx = rankη}.
We say thatη is nondegenerate if it is an isomorphism or, equivalently,χη = TM.

Clearly,Rη ⊂ M is an open dense set.

Definition 2.3. Let M be a manifold,K be a foliation onM such that the factor space
M ′ = M/K is a manifold, and letp : M → M ′ be the canonical projection. We say that
a bivectorη ∈ Γ(

∧2 TM) is projectable viap if there exists a bivectorη′ ∈ Γ(
∧2 TM′)

(called the projection ofη) such that

η′x′ = p∗ηx

for anyx′ ∈ M ′, x ∈ p−1(x′).

Definition 2.4. A bivectorη ∈ Γ(
∧2 TM) is called Poisson if the operation

{f, g}η = η(f )g, f, g ∈ E(M),

where we putη(f ) = η(df ), satisfies the Jacobi identity. The operation{, }η is called the
Poisson bracket, the vector fieldsη(f ) are called hamiltonian.

Proposition 2.5 (e.g.[15]). A bivectorη is Poisson iff[η, η] = 0,where[, ] is the Schouten
bracket on multivector fields.

Theorem 2.6 ([12]). If η is a Poisson bivector its generalized distribution of characteristic
subspacesχη is completely integrable, i.e. there exists a generalized foliationS on M such
that TxS = χ

η
x for any x ∈ M. The restrictionη|S of η to any leaf S ofS is a correctly

defined nondegenerate Poisson bivector.

Definition 2.7. The leaves of the generalized foliationS are called symplectic leaves ofη.

The definition is motivated by the fact that the inverse to a nondegenerate Poisson bivector
2-form is symplectic.
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Definition 2.8. A functionf ∈ E(U) over an open setU ⊂ M is called a Casimir function
for η if η(f ) ≡ 0. The set of all Casimir functions forη overU will be denoted byZη(U).

Geometrically speaking the Casimir functions are those constant on the symplectic leaves
of maximal dimension.

Definition 2.9. A setZ ⊂ Zη(U) of Casimir functions overU ⊂ M is called complete
if there existf1, . . . , fk ∈ Z, wherek = corankη := dimM − rankη, such that their
differentials are independent onU ∩ Rη.

In other wordsZ is complete iff the common level sets of functions fromZ coincide with
the symplectic foliation onU∩Rη. It is clear thatZη(U) is complete for sufficiently smallU.

Definition 2.10. A setI ⊂ E(U)of functions overU ⊂ M is called complete involutive forη
if: (1) {f, g}η = 0 ∀f, g ∈ I; (2) there existf1, . . . , fs ∈ I, wheres = dimM−(1/2)rankη,
such that their differentials are independent onU ∩ Rη.

If I is a complete involutive set overU, then the setI∩Zη(U) ⊂ Zη(U) is complete in the
sense ofDefinition 2.9. Any such setI cuts a foliation ofU ∩Rη of dimension(1/2)rankη
which is lagrangian in any symplectic leaf (of maximal dimension).

Definition 2.11. A mapµ : (M, η) → (M ′, η′) between two Poisson manifolds is called
Poisson if for anyf, g ∈ E(M ′):

µ∗{f, g}η′ = {µ∗f,µ∗g}η,
or, equivalently,µ∗ηx = η′µ(x) for anyx ∈ M.

Proposition 2.12 ([22], Lemma 1.2).If µ : (M, η) → (M1, η1) is a Poisson map, then
the trajectory of any hamiltonian fieldη1(f ) is the projection viaµ of the trajectory of
hamiltonian fieldη(µ∗f ).

Proposition 2.13. Letp : M → M ′ be as inDefinition 2.3and assume thatη is a Poisson
bivector on M. Then the bivectorη is projectable via p iff for any open setU ⊂ M ′ the
subspacep∗E(U) = {p∗f |f ∈ E(U)} ⊂ E(P−1(U)) is a Lie subalgebra with respect
to {, }η|U . If η is projectable andη′ is the projection, thenη′ is a Poisson bivector and
p : (M, η)→ (M ′, η′) is a Poisson map.

Proof. Let (U, {ϕj}) be a coordinate map onM ′. Sincep∗E(U) is a subalgebra,{p∗ϕi,
p∗ϕj}η = p∗cij for some functioncij ∈ E(U). It is easily seen thatcij transforms tensorially
under coordinate changes, i.e. represents some bivectorη′ onM ′. The remaining part of the
proof is almost immediate consequence of the definitions. �

Here is another criterion of projectability.
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Theorem 2.14 (Libermann–Weinstein criterion of projectability[14,22]). Letp : M → M ′
andK be as inDefinition 2.3and letη be a nondegenerate Poisson bivector on M. Write
NK ⊂ T ∗M for the conormal bundle to the foliationK. Thenη is projectable via p iff the
distributionη(NK) ⊂ TM, which is the skew-orthogonal complement to the distribution
TK, is completely integrable.

Corollary 2.15 ([22]). Let p : M → M ′, K, andη be as in the assumption ofTheorem
2.14. Assume thatη is projectable and that the foliationK′′ tangent to the distribution
η(NK) is such that the factor spaceM ′′ = M/K′′ is a manifold. Thenη is also projectable
toM ′′ via the canonical projectionp′′ : M → M ′′.

Proof. Follows from the fact that in the nondegenerate caseη(N[η(NK)]) = TK, i.e. the
distributionsTK andη(NK) are the skew-orthogonal complements of each other. �

Definition 2.16 ([22]). Let η be a nondegenerate Poisson bivector onM and letK′,K′′ be
foliations onM such thatη(NK′) = TK′′ and the factor spacesM ′ = M/K′,M ′′ = M/K′′
are manifolds. The pair(η′, η′′), whereη′ = p′∗η, η′′ = p′′∗η are the projections ofη via the
canonical projectionsp′ : M → M ′ andp′′ : M → M ′′ respectively, is called a dual pair
of Poisson bivectors.

The situation can be expressed by the following diagram:

whereη(NK′) = TK′′.

Example 2.17. LetG be a connected Lie group with the Lie algebrag. Assume it is acting
on a Poisson manifold(M, η), in particular a Lie algebra homomorphismρ : g→ ΓTM is
given (the space of vector fields is endowed with the commutator Lie bracket).

The action is called hamiltonian if there exists a Lie algebra homomorphismψ : g →
E(M) such that the following diagram is commutative:

whereη(·) is the Lie algebra homomorphism of taking the hamiltonian vector field (see
Definition 2.4). The mapµ : x �→ ϕx : M → g∗ defined byϕx(v) = ψ(v)(x), v ∈ g, is
called the moment map.

Assume thatG acts onM by Poisson maps and thatM/G is a manifold. Then by
Proposition 2.13the bivectorη is projectable via the canonical projectionM → M/G. If
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moreover,η is nondegenerate and the action is hamiltonian its orbits are skew-orthogonal
to the fibers of the moment map. This last is a Poisson map from(M, η) to (g∗, ηcan), where
ηcan is the canonical linear Poisson bivector ong∗. In case of a locally free actionµ is a
submersion (see the proof ofCorollary 2.20) and we get a dual pair(η′, ηcan).

We complete the section by a series of propositions that will be crucial for the subsequent
part of the paper.Proposition 2.18andCorollaries 2.19 and 2.20are classical.

Proposition 2.18. We retain the notations ofDefinition 2.16. Assume that(η′, η′′) is a dual
pair of Poisson bivectors. Then

(a) The distributionDx = TxK
′ + TxK

′′ ⊂ TxM, x ∈ M, is of constant dimension on an
open dense setR ⊂ M and is completely integrable on R.

(b) The foliationD tangent to D on R is the pull-back of the foliations of symplectic leaves
S ′,S ′′ of maximal dimension of the bivectorsη′, η′′, respectively:

(p′)∗S ′ = D = (p′′)∗S ′′.

(c) corankη′ = corankη′′.

Proof. The constancy of dimension on an open dense set follows from analyticity of all
objects. Item (b) is a consequence ofProposition 2.12and of skew-orthogonality of the
foliationsK′,K′′. Also, (b) implies integrability ofD and (c). �

Corollary 2.19. We retain the assumptions ofProposition 2.18. LetU ′ ⊂ M ′, U ′′ ⊂ M ′′
be open sets such that the sets of Casimir functionsZ′ := Zη′(U ′), Z′′ := Zη′′(U ′′) are
complete(seeDefinition 2.9) andU := (p′)−1(U ′)∩ (p′′)−1(U ′′) �= ∅. Put ((p′)∗Z′)|U =
{((p′)∗f )|U |f ∈ Z′} and((p′′)∗Z′′)|U = {((p′′)∗g)|U |g ∈ Z′′}. Then

((p′)∗Z′)|U = ((p′′)∗Z′′)|U. (2.1)

Corollary 2.20. Assume that a Lie group G is acting in the hamiltonian way on a nonde-
generate Poisson manifold(M, η) (seeExample 2.17). Assume moreover, that this action
is locally free(the stabilizer of any point is at most discrete) and thatM/G is a manifold.
Then for anyx′ ∈ M/G we havecorankη′

x′ = rankG, whereη′ is the projection ofη via
the canonical mapM → M/G.

Proof. It is well-known that the image of the differential at a pointx ∈ M of the moment
mapµ : M → g∗ coincides with the annihilator ing∗ of gx ⊂ g, wheregx is the Lie algebra
of the stabilizer ofx (see[11], Lemma 2.1). Thus in our situation when the stabilizer is
discreteµ is a submersion. ByProposition 2.18corank ofη′ coincides with the one ofηcan,
i.e. with rank of the Lie groupG. �

Here is a generalization of this result to the case of degenerate Poisson bivectorη.

Proposition 2.21. Let η be a regular Poisson bivector(i.e. rankηx = const)on M and
let a Lie group G act locally freely on M in such a way thatM/G is a manifold. Given
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a symplectic leafS ⊂ M, write GS ⊂ G for its stabilizer, i.e. for a subgroup defined by
GSS ⊂ S. Fix S and assume that:

(1) G acts by Poisson maps, i.e. the action preservesη;
(2) the action induces a transitive action on the space of symplectic leaves;
(3) the induced action ofGS on (S, η|S) is hamiltonian.

Then

(a) if Ŝ is any symplectic leaf, the stabilizersGS,GŜ
are conjugate;

(b) the induced action ofG
Ŝ

on Ŝ is hamiltonian;
(c) η is projectable via the canonical mapM → M/G andcorankη′

x′ = rankGS for any
x′ ∈ M/G, whereη′ is the projection.

Proof. Since any two points on any symplectic leafS of η can be connected by a fi-
nite number of hamiltonian trajectories and since the action preservesη, it follows from
Proposition 2.12that the imagegS, g ∈ G, is again a symplectic leaf. Now, assumption (2)
implies that for anyS, Ŝ there existsa ∈ G such thataS= Ŝ, henceGS = {g ∈ G|gS=
S} = {g ∈ G|ga−1Ŝ = a−1Ŝ} = {g ∈ G|aga−1Ŝ = Ŝ} = a−1G

Ŝ
a.

To prove (b) let us consider the induced actionρ
Ŝ

: g
Ŝ
→ ΓTŜ of the Lie algebra of the

stabilizerG
Ŝ

on Ŝ. Its hamiltonicity follows from the following commutative diagram:

where all the maps are Lie algebra homomorphisms,ψS is one existing by assumption (3),
La denotes the left multiplication bya.

Projectability ofη follows from (1) and fromProposition 2.13. Condition (2) guarantees
that the projectionη′ of η via the mapM → M/G coincides with the projection(η|S)′
of the restricted Poisson bivectorη|S via the mapS → S/GS = M/G. Taking into ac-
count assumption (3) we can applyCorollary 2.20to the action ofGS on (S, η|S). This
proves (c). �

Proposition 2.22. We retain the notations ofDefinition 2.16. Let (η′, η′′) be a dual pair
of Poisson bivectors, let U ′ ⊂ M ′, U ′′ ⊂ M ′′ be open sets such thatU := (p′)−1(U ′) ∩
(p′′)−1(U ′′) �= ∅ and let I ′ ⊂ E(U ′), I ′′ ⊂ E(U ′′) be complete involutive sets of func-
tions for η′, η′′ respectively. Put((p′)∗I ′)|U = {((p′)∗f )|U |f ∈ I ′} and ((p′′)∗I ′′)|U =
{((p′′)∗g)|U |g ∈ I ′′}. Then the spaceI := ((p′)∗I ′)|U + ((p′′)∗I ′′)|U is a complete involu-
tive set of functions forη.
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Proof. We first notice that sinceK′ andK′′ are skew-orthogonal,{(p′)∗f, (p′′)∗g}η = 0 for
anyf ∈ E(U ′), g ∈ E(U ′′). Together with the Poisson property forp′ andp′′ this shows
thatI is an involutive set of functions with respect toη. Now we only need to calculate its
“functional dimension”.

Let us choose a “functional basis”{f1, . . . , fs′ } of I ′ such thatf1, . . . , fr′ ∈ Zη′(U ′) and
any “functional basis”{g1, . . . , gs′′ } of I ′′. Then the functions(p′)∗fr′+1, . . . , (p

′) astfs′ ,
(p′′)∗g1, . . . , (p

′′)∗gs′′ are functionally independent on an open dense subset ofU since

{(p′)∗f |U |f ∈ E(U ′)} ∩ {(p′′)∗g|U |g ∈ E(U ′′)} = Z,

whereZ denotes the set(2.1). Now, one has

s′ − r′ = 1
2rankη′ = 1

2(dimK′′ − dimK′′ ∩K′),
s′′ = 1

2rankη′′ + corankη′′ = 1
2(dimK′ − dimK′′ ∩K′)+ dimK′′ ∩K′

and, finally

s′ − r′ + s′′ = 1
2(dimK′′ + dimK′) = 1

2dimM. �

3. Preliminaries on bi-Poisson structures

Definition 3.1. A pair (η1, η2) of linearly independent bivectors on a manifoldM is called
Poisson ifηt := t1η1 + t2η2 is a Poisson bivector for anyt = (t1, t2) ∈ K

2; the whole
family of Poisson bivectors{ηt}t∈K2 is called a bi-Poisson structure. We define the trivial
bi-Poisson structure as a family consisting of the zero bivector.

A bi-Poisson structure{ηt} (we shall often skip the parameter space in the notations) can
be viewed as a two-dimensional vector space of Poisson bivectors, the Poisson pair(η1, η2)

as a basis in this space. Of course, the basis can be changed.

Definition 3.2. A bi-Poisson structure{ηt} is called Jordan at a pointx ∈ M if rankηtx =
dimM for somet. A bi-Poisson structure is called micro-Jordan if it is Jordan at any point
of some open dense subset inM.

The terminology is due to Gelfand and Zakharevich[8,23]who reduced the analysis of a
bi-Poisson structure at a point to the study of a pencil of operators and applied the classical
classificational results. These last say that any pencil is built of the irreducible ones, the
so-called Jordan and Kronecker blocks. The above definition corresponds to the case when
only the Jordan blocks are present.

The theory of pencils of operators is well understood over the field of complex numbers.
We shall also need some notions related to the complexification matters.

Notation 3.3. If M is a real manifold (recall that all objects are real-analytic) we denote
by M̃ some complexification ofM, i.e. a complex manifoldM̃ such thatM is embedded
in M̃ as a totally real submanifold. The complex structure nearM is defined uniquely
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up to a biholomorphic map preservingM (see[3]), thats why we use the same notation
M̃ for possibly different complexifications. Given any tensorη on M, we write η̃ for its
complexification, which is a holomorphic tensor defined onM̃ (the last should be shrinked
if needed).

For any real bi-Poisson structure{ηt = t1η1+ t2η2} onM we denote bỹηt its complexifi-
cation, i.e. the holomorphic bi-Poisson structure{η̃t = t1η̃1+ t2η̃2|t = (t1, t2) ∈ C

2} onM̃.
If M and{ηt} are a priori holomorphic we put̃M = M, {η̃t} = {ηt}, etc., i.e. tilde for

holomorphic objects will denote themselves (not the complexification of the underlying
real-analytic objects).

Definition 3.4. Let {ηt} be a micro-Jordan bi-Poisson structure onM. PutE(x) = {t ∈
C

2|rankCη̃tx < dimCM̃} ⊂ C
2, x ∈ M. This set is called exceptional for{ηt} at x. If

E = E(x) does not depend onx the structure{ηt} is called dull.

This terminology is due to Zakharevich and is motivated by the fact that the constancy of
E(x) implies the constancy of the eigenvalues for the recursion operatorη−1

1 ◦η−1
2 , (assume

that the basisη1, η2 is so chosen thatη2 is nondegenerate), i.e. the situation is far from being
of interest in the theory of integrable systems in which these eigenvalues appear as the first
integrals.

It is clear thatE(x) consists of a finite number of one-dimensional subspaces inC
2.

Definition 3.5. Let {ηt} be a bi-Poisson structure onM. It is called Kronecker at a pointx ∈
M if rankCη̃tx is constant with respect tot ∈ C

2\{0}. We say that{ηt} is micro-Kronecker if
it is Kronecker at any point of some open dense set inM. In particular the trivial bi-Poisson
structure is micro-Kronecker.

Again this terminology is due to Zakharevich and is motivated by the fact that under
the above rank assumptions the corresponding pencil of operators (see the discussion after
Definition 3.2) contains only the Kronecker blocks.

Definition 3.6. Let p : M → M ′ be as inDefinition 2.3and let{ηt = t1η1 + t2η2} be a
bi-Poisson structure onM. We say that it is projectable viap if so is the bivectorηt for any
t. The family{(ηt)′ = t1η

′
1+ t2η

′
2} consisting of the projections ofηt , which is a bi-Poisson

structure onM ′ under the condition that the bivectorsη′1, η
′
2 are linearly independent or

trivial (seeProposition 2.13), is called the projection of{ηt}.

Now we are able to formulate the main question of this paper: when the projection of a
(projectable) dull micro-Jordan bi-Poisson structure is micro-Kronecker? We shall answer
it in the next section for some particular cases of locally free bi-Poisson actions. Now we
want to present a result which shows why the micro-Kronecker structures are interesting
and which will be effectively used later.
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Proposition 3.7. Let{ηt} be a micro-Kronecker bi-Poisson structure on M. Assume that an
open setU ⊂ M is such that the setZηt (U) of Casimir functions forηt over U is complete
(seeDefinition 2.9) for anyt �= 0. Then the set

Z{η
t}(U) :=

∑
t �=0

Zηt (U),

is a complete involutive set of functions for anyηt �= 0 (seeDefinition 2.10). (Here and
subsequently in similar situations we understand the sum as the algebraic sum of linear
(sub)spaces of functions in the linear space of all functions. In other words this sum coincides
with the linear span〈Zηt (U)|t �= 0〉. Of course, it is enough to sum over a sufficiently large
finite set of indices t.)

We shall call the functions fromZ{ηt} the first integrals of the bi-Poisson structure{ηt}.
The reader is referred to a celebrated paper of Bolsinov[2] for the proof of completeness.
Although the involutivity of this set was known and extensively used since the end of the
80’s the author was not able to find its proof and gave a version of it in[16].

Example 3.8 (Method of the argument translation). Letg be a Lie algebra with codim
Singg∗ ≥ 3, where Singg∗ ⊂ g∗ is the algebraic set of all coadjoint orbits of nonmaximal
dimension (in particularg can be any semisimple). Letη1 = ηcan be a canonical linear
Poisson bivector ong∗, and letη2 = ηcan(a) be the Poisson bivector obtained by “freezing”
ηcan at a regular (i.e. belonging tog∗ \ Singg∗ = Rηcan) elementa. It is well-known
that (η1, η2) is a Poisson pair and that the corresponding bi-Poisson structure{ηtAT} is

micro-Kronecker (see[2,16,23]). The set of first integralsZ{η
t
AT } is functionally generated

by f1(x+λa), . . . , fk(x+λa), λ ∈ K, wheref1, . . . , fk are the invariants of the coadjoint
action.

4. A locally free bi-Poisson action of a Lie group on a dull micro-Jordan structure

Assumptions and notations 4.1. Let G be a real Lie group. We shall assume that it pos-
sesses the complexification, i.e. a complex Lie groupG̃ = GC containingG as a real
subgroup such that its Lie algebragC is the complexification of the Lie algebrag of G. In
particular,G may be linear semisimple or compact.

Given a real dull micro-Jordan bi-Poisson structure{ηt = t1η1 + t2η2} on a manifold
M, we denote byM̃ a complexification ofM such that the bivectorsη1, η2 are extended
to holomorphic Poisson bivectorsη̃1, η̃2 (automatically forming a Poisson pair oñM). We
write {η̃t} for the holomorphic bi-Poisson structure{t1η̃1+ t2η̃2}, e1, . . . , eN for the vectors
in C

2 spanning the lines of the exceptional setE = 〈e1〉 ∪ · · · ∪ 〈eN〉 (seeDefinition 3.4),
andη̃e1, . . . , η̃eN for the corresponding exceptional bivectors.

We retain the convention that̃(·) = (·) for a holomorphic object(·) (cf. Notation 3.3).

The central result of this paper is the following.

Theorem 4.2. We retain the above assumptions and notations. Assume a Lie group G is
acting locally freely on a manifold M with a dull micro-Jordan bi-Poisson structure{ηt}, that
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this action is extended to a locally free action ofG̃ onM̃ (in the complex case this extended
action is the initial one) and thatM/G, M̃/G̃ are manifolds. For anyj = 1, . . . , N fix a
symplectic leafSj of maximal dimension of the exceptional bivectorη̃ej and letG̃j denote
its stabilizer.

We make the following additional assumptions on theG̃-action onM̃:

(1) it is bi-Poisson, i.e. preserves̃η1, η̃2;
(2) it induces a transitive action on the space of symplectic leaves of maximal dimension

of any exceptional bivector̃ηej ;
(3) the induced action of̃Gj on (Sj, η̃ej |Sj ) is hamiltonian;

(4) the action ofG̃ on (M̃, η̃t), t ∈ C
2 \ E, is also hamiltonian.

Then

• {ηt} is projectable via the canonical mapp : M → M/G;
• the projection{(ηt)′} is a bi-Poisson structure under the condition that the bivectors
η′1, η

′
2 are linearly independent or trivial;

• {(ηt)′} is Kronecker at any pointx′ ∈ p(Rη̃e1 ∪ · · · ∪ Rη̃eN ) ⊂ M/G iff

rankG̃ = rankG̃1 = · · · = rankG̃N

(recall thatRη stands for the regularity set of a bivectorη, seeDefinition 2.2).

Proof. It is clear that eachηt is projectable (sinceG acts by the Poisson maps with respect
to η1, η2, seeProposition 2.13), and that{(ηt)′} is a bi-Poisson structure providedη′1, η

′
2

are linearly independent or trivial.
By definition{(ηt)′} is Kronecker atx′ iff corank(η̃t)′

x′ is constant with respect tot �= 0.

Now it remains to useCorollary 2.20to deduce that corank(η̃t)′
x′ = rankG̃ for t ∈ C

2 \ E
andProposition 2.21to get corank(η̃ej )′

x′ = rankG̃j, j = 1, . . . , N. �

Corollary 4.3. In the situation of the above theorem letµt : M → g∗, t ∈ K
2 \ E, denote

the moment map corresponding toηt . Assume that{(ηt)′} is Kronecker. Then

(a) the pull-back of the set of first integralsp∗F := p∗(Z{(ηt)′}) (seeProposition 3.7) is
equal to

p∗F =
∑

s∈K2\E
µ∗s (Z

ηcan),

whereηcan is the canonical linear Poisson bivector on the dual spaceg∗ to the Lie
algebra of G;

(b) provided that G satisfies the conditioncodim Singg∗ ≥ 3 of the argument translation
method(seeExample 3.8), one gets the following complete involutive with respect to
any fixedηt0, t0 /∈ E, set of functions on M:

Gt0 :=
∑

s∈K2\E
µ∗s (Z

ηcan)+ µ∗t0(Z
{ηtAT }).
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Proof. The Proof of (a) follows fromCorollary 2.19and from the definition of the first
integrals; the proof of (b) is a consequence of (a) andProposition 2.22. �

Example 4.4. Let M = R
2N with coordinates{pj, qj}Nj=1, η1 = (∂/∂p1) ∧ (∂/∂q1) +

· · · + (∂/∂pN)∧ (∂/∂qN), η2 = a1(∂/∂p1)∧ (∂/∂q1)+ · · · + aN(∂/∂pN)∧ (∂/∂qN), where
a1, . . . , aN are different real numbers. Then the family{ηt} := {t1η1+ t2η2}, t = (t1, t2) ∈
R

2, is a dull micro-Jordan bi-Poisson structure with the exceptional setE = 〈(a1,−1)〉 ∪
· · · ∪ 〈(aN,−1)〉 ⊂ C

2, the exceptional bivectors̃ηej = η̃(aj,−1) and the corresponding
foliations of symplectic leavesSj = {Pj = const,Qj = const}, j = 1, . . . , N, where
{Pj,Qj}Nj=1, Pj = pj + ip̂j,Qj = qj + iq̂j, are the holomorphic coordinates onMC =
C

2N .
AssumeG = SL(2,R) is acting onR2 in a standard linear way and that this action is ex-

tended toM = R
2N diagonally. It is easy to see that all these data satisfy the assumptions of

Theorem 4.2. Moreover, the stabilizers̃G1, . . . , G̃N ⊂ G̃ = SL(2,C) of fixed symplectic
leavesSj = {Pj = bj,Qj = cj} ⊂ Sj, j = 1, . . . , N, which coincide with the stabilizers

of the vectors [bj
cj

] under the standard linear̃G-action, are one-dimensional, consequently

abelian and have rank 1 equal to rank ofG̃. Hence the reduced bi-Poisson structure{(ηt)′}
is Kronecker on the regular part of the varietyM/G.

The calculations show that the moment map which corresponds toηt is

µt : (p, q) �→



z1 = −
∑

j

pjqj

t1+ ajt2

z2 = −(1/2)
∑

j

q2
j

t1+ ajt2

z3 = (1/2)
∑

j

p2
j

t1+ ajt2


: R

2N → (sl(2,R))∗,

and that the Casimir function ofηcan on (sl(2,R))∗ is f = z2
1 + 4z2z3. Introducing the

affine parameterr = −(t1/t2) we get an involutive family of functions onM:

p∗F =
∑
r∈R

〈 N∑
j=1

pjqj

r − aj

2

−
 N∑
j=1

q2
j

r − aj

  N∑
j=1

p2
j

r − aj

〉

(herep : M → M/G is the canonical map). Expanding this expression with respect to the
powers ofr−aj and calculating the coefficients corresponding to the first powers we obtain
the following functions generatingp∗F:

N∑
k=1,k �=j

(pkqj − pjqk)
2

ak − aj
, j = 1, . . . , N.

There is one relation between these functions. ByCorollary 4.3(b) applied with the choice
t0 = (1,0) (i.e. ηt0 = η1) p∗F can be completed by the functionµ∗(1,0)g, whereg =
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z1z
0
1 + 2z2z

0
3 + 2z3z

0
2 is obtained fromf by the shift in the direction of an elementz0 =

(z0
1, z

0
2, z

0
3) ∈ (sl(2,R))∗:

f(z+ λz0) = f(z)+ 2λg(z)+ λ2f(z0), λ ∈ R.

Finally, we get the following complete involutive (with respect to a standard Poisson bracket)
set of functions onR2N :

N∑
k=1,k �=j

(pkqj − pjqk)
2

ak − aj
, j = 1, . . . , N − 1,

z0
1

N∑
j=1

pjqj + z0
2

N∑
j=1

p2
j + z0

3

N∑
j=1

q2
j ,

wherez0
i , i = 1,2,3, are any constants simultaneously not equal to 0.

5. Main example: diagonal action of a Lie group on the product of N copies of the
dual space to its Lie algebra

Let G be a complex Lie group,g its Lie algebra. There is a natural coadjoint action
of the direct productG×N of N copies ofG on (g∗)×N which restricts toG ⊂ G×N
embedded diagonally. Letpj : (g∗)×N → g∗, j = 1, . . . , N, denote the natural projection
to thejth component and letη be the canonical linear Poisson bivector (c.l.P.b.) ong∗.
Then the c.l.P.b.η×N on (g∗)×N has the decompositionη×N = η(1) + · · · + η(N), where
η(j), j = 1, . . . , N, is the unique Poisson bivector on(g∗)×N defined by the condition
pj∗η(j) = η, pi∗η(j) = 0, i �= j.

Proposition 5.1. Fix a coadjoint orbitO = G×N(x1, . . . , xN) ⊂ (g∗)×N of an element
(x1, . . . , xN) ∈ (g∗)×N and different numbersa1, . . . , aN ∈ C. Then

(a) the bivectorsη×N andηa×N := a1η(1)+ · · · + aNη(N) form a Poisson pair on(g∗)×N ;
(b) they are G-invariant;
(c) they have the natural restrictions(being Poisson bivectors) η1 = η×N |O, η2 = ηa×N |O

toO;
(d) the family{ηt = t1η1+ t2η2} is a dull micro-Jordan bi-Poisson structure onO with the

exceptional setE = 〈(a1,−1)〉 ∪ · · · ∪ 〈(aN,−1)〉;
(e) for any j = 1, . . . , N the symplectic foliationSj of the exceptional bivectorηej =

η(aj,−1) coincides with the foliation of fibers of the natural projectionpj|O : O =
Gx1× · · · ×GxN → Gxj.

Proof. Item (a) follows fromProposition 2.5since [η(i), η(j)] = 0 for anyi, j = 1, . . . , N.
The first bivector isG-invariant by definition. The invariance of the second one follows
from theG-equivariance of the projectionspj and from the invariance ofη.
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The restriction ofη×N toO is simply the restriction to a symplectic leaf. Moreover, any
η(j) is tangent to the leaves of any projectionpi, i �= j, and top−1

j (Gxj), i.e.η(j) also has
the restriction toO. This implies (c).

Sinceη1 is nondegenerate (as any restriction of a Poisson bivector to a symplectic leaf),
{ηt} is micro-Jordan. Obviously, the only degenerate bivectors in this family are those
proportional toηej , j = 1, . . . , N, and the corresponding characteristic distributions satisfy
the equalitiesχη

ej =∑
i�=j(χη(i) )|O, which complete the proof. �

The main result of this section (Theorem 5.3) will study the reduction of the bi-Poisson
structure{ηt} onG×N -orbits under the action ofG. Now we shall specify the class of orbits
under consideration.

Definition 5.2. An orbitO = G×N(x1, . . . , xN) ⊂ (g∗)×N is called admissible if:

(1) There exist elementsx′1 ∈ Gx1, . . . , x
′
N ∈ GxN such that their stabilizersG

x′j
g∗ ⊂ G, j =

1, . . . , N, have discrete intersection; equivalently:

g
x′1
g∗ ∩ · · · ∩ g

x′N
g∗ = {0}.

(2) The stabilizersGj := G
xj
g∗ ⊂ G, j = 1, . . . , N, have all the same rank equal to the

rank ofG:

rankG1 = · · · = rankGN = rankG.

We postpone the discussion of the question which orbits are admissible to the end of this
section (seeTheorem 5.7andRemark 5.9); here we mention only that the admissibility
holds for generic orbits in the semisimple case.

Now we formulate the second main result of this paper.

Theorem 5.3. LetO ⊂ (g∗)×N be an admissibleG×N -orbit and letM ⊂ O be an open
set such thatM/G is a manifold. Then the bi-Poisson structure{ηt}|M is projectable via the
canonical mapp : M → M/G and the projection{(ηt)′} is a micro-Kronecker bi-Poisson
structure(seeDefinition 3.5) onM ′ = M/G. More precisely, {(ηt)′} is Kronecker at any
x′ ∈ M ′ \ p(N), whereN ⊂ (g∗)×N is the algebraic set of all elements with a nondiscrete
G-stabilizer.

Proof. Of course, this proof will useTheorem 4.2. Now we shall check that theG-action
on {ηt} satisfies the assumptions of this theorem.

First, we note that since theG-stabilizerG(x1,...,xN)

(g∗)×N of a point(x1, . . . , xN) ∈ (g∗)×N

is equal to the intersectionGx1
g∗ ∩ · · · ∩ G

xN
g∗ , condition (1) in definition of admissibility

guarantees that theG-action is locally free.
TheG-invariance of{ηt} was proved inProposition 5.1(a), so we get assumption (1)

of Theorem 4.2. To check assumption (2) recall (seeProposition 5.1(e)) that the symplec-
tic foliation of the exceptional bivectorηej coincides with{Gx1 × · · · × Gxj−1 × x ×
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Gxj+1 × · · · × GxN |x ∈ Gxj}. SinceG is acting transitively onGxj, the same is true for
the inducedG-action on the leaves of this foliation.

Now, let us prove the hamiltonicity of theG-action onM with respect toηt, t ∈ C
2 \E.

The commutativity of the following diagram is standard:

(herei is the inclusion ofg×N in E((g∗)×N) as a set of linear functions andρ is the Lie
algebra homomorphism corresponding to the coadjoint action). It leads to the following
commutative diagram:

whereρd is the restriction ofρ to the diagonal,ψt is defined as

ψt(x) = 1

t1+ a1t2
p∗1(x)|O + · · · +

1

t1+ aNt2
p∗N(x)|O,

x in the RHS being understood as a function ong∗. So assumption (4) ofTheorem 4.2
is satisfied, it remains to check assumption (3). This will be done with the help of the
commutative diagram

Heregj is the Lie algebra of the stabilizerGj = G
xj
g∗ of a symplectic leafSj = Gx1×· · ·×

Gxj−1×xj×Gxj+1×· · ·×GxN , ρd |gj is the restriction togj of the above mentioned map
ρd , andψj is given by the formula

ψj(x)= 1

aj − a1
p∗1(x)|Sj + · · · +

1

aj − aj−1
p∗j−1(x)|Sj

+ 1

aj − aj+1
p∗j+1(x)|Sj + · · · +

1

aj − aN
p∗N(x)|Sj , x ∈ gj ⊂ E(g∗).

Thus, all the assumptions ofTheorem 4.2are checked. In order to finish the proof we need
to use condition (2) of equality of ranks from the definition of admissibility. �

Corollary 5.4. The moment mapµt : O→ g∗ for the G-action on(O, ηt) is given by the
restriction toO of the following map:

(g∗)×N � (x1, . . . , xN) �→ 1

t1+ a1t2
x1+ · · · + 1

t1+ aNt2
xN.
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Proof. Follows from the proof ofTheorem 5.3. �

Corollary 5.5. The set of first integralsZ{(ηt)′} of the reduced Kronecker bi-Poisson struc-
ture coincides with the family of functions

F =
∑

t∈C2\E
µ∗t (Z

ηcan),

considered as functions onM/G.

Proof. Follows fromCorollary 2.19. See alsoCorollary 4.3. �

Corollary 5.6. Assume that G satisfies the conditioncodim Singg∗ ≥ 3 of the argument
translation method(seeExample 3.8). Then for any fixedt0 ∈ C

2 \ E and any regular
a ∈ g∗ we get a complete involutive set of functions onO

Gt0 =
∑

t∈C2\E
µ∗t (Z

ηcan)+ µ∗t0(Z
{ηtAT }).

Proof. Follows fromCorollary 4.3. �

In the remaining part of this section we want to discuss two aspects of applicability of
Theorem 5.3: which orbits are admissible and what happens in real case.

Theorem 5.7. Assume G is semisimple. Then a genericG×N -orbitO = Gx1×· · ·×GxN ⊂
(g∗)×N is admissible for anyN ≥ 2.

Proof. We will first prove condition (2) ofDefinition 5.2. It follows from the well-known
fact (see[1] for example), that the stabilizers of generic elements in the dual space to any
Lie algebra are abelian, and from the equality of dimensions: rankG = dimG

x1
g∗ = · · · =

dimG
xN
g∗ .

The first condition of the definition of admissibility requires some additional prepa-
rations. �

Lemma 5.8. LetK ⊂ G be a maximal compact subgroup. Then the principal orbital type
stabilizerKx

g∗ ⊂ K of an elementx ∈ g∗ under the coadjoint action of K ong∗ is at most
discrete(finite).

Proof. (The idea of this proof was communicated to the author by Prof. Sam Evens.)
For this proof we identifyg∗ and g using the Killing form. We claim that the Lie al-
gebrakx of a principal orbital type stabilizerKx for the K-action ong∗ is trivial. In-
deed, Theorem 3.6 of[13] shows that for any nilpotent elemente ∈ g the subalgebra
ge = ade(g) ∩ ge consists of nilpotent elements. If, moreover,e is a principal nilpotent
element (see[13], Section 5.2) it can be easily seen thatge = ge. However, each ele-
ment of k is semisimple; thuske = k ∩ ge = {0}. Of course, this implies the triviality
of kx. �
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Continuation of the proof. Now we are able to complete the proof ofTheorem 5.7. Since
theK-action ong∗ = k⊕ ik is diagonal, it follows from the above lemma that for a generic
pair(a, b) ∈ k∗ ⊕ k∗ the intersection of stabilizersKa

k∗ ∩Kb
k∗ is finite. The complexification

gives the discreteness of the intersectionGa
g∗ ∩ Gb

g∗ for a generic pair(a, b) ∈ g∗ ⊕ g∗.
This implies the result.

Remark 5.9. Theorem 5.7shows thatTheorem 5.3can be applied to semisimple Lie groups
and generic orbits in(g∗)×N . We also note that:

(1) Corollary 5.6is also valid for this data since the condition codim Singg∗ ≥ 3 of the
argument translation method (seeExample 3.8) holds in the semisimple case.

(2) Theorem 5.3can be also applied for nonsemisimple Lie groups: condition (2) of defi-
nition of admissibilityDefinition 5.2holds for any Lie algebrag and for the stabilizers
Gxj of generic pointsxj ∈ g∗ (see proof ofTheorem 5.7); condition (1) should be
achieved at least for the algebras with the trivial center by increasing the number of
componentsN.

(3) Another possibility for application ofTheorem 5.3are nongeneric orbits, for example,
rank of the stabilizerGx of any semisimple elementx ∈ g∗ coincides with rankG for
semisimpleG (see[4, Chapter 2]for example).

Remark 5.10. Since the complexification of a real semisimple Lie group is complex
semisimple, all the results of this section are valid in real setting, i.e. for a real semisimple
groupG and differenta1, . . . , aN ∈ R. All proofs remain the same, only the arguments
concerning the proof of condition (1) of the definition of the admissibility for generic orbits
require additional considerations.

Proposition 5.11. Let G be a real semisimple Lie group with the Lie algebrag. Then the
generic stabilizer of the G-action on(g∗)×N,N ≥ 2, is at most discrete.

Proof. Let gC be the complexification ofg. Then byLemma 5.8the setN of all points
x ∈ (gC)∗ × (gC)∗ with the nontrivial stabilizer(gC)x (with respect to the diagonal action
of gC) is a proper complex algebraic set. The intersectionN ′ = N ∩ g∗ × g∗ is a proper
real algebraic set, and forx ∈ g∗ ×g∗ \N ′ the corresponding real stabilizergx = (gC)x∩g
is trivial. �
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